Примеры расчетов и лабораторных по термеху и сопроматы

Расчет трехопорной рамы Изучение сопротивления материалов требует решения конкретных задач, что позволяет глубже понять теоретические основы дисциплины. В настоящей работе рассмотрены типовые задачи по следующим разделам курса сопротивления материалов

Статически неопределимый стержень кусочно-постоянного сечения Рассмотрим стержень кусочно-постоянного сечения, закрепленный с двух концов, под действием продольных сосредоточенных сил Fk  и собственного веса 

Для определения внутренних усилий и перемещений в стержне его разбивают на участки. Границами участков являются сечения стержня, где приложены сосредоточенные внешние силы или меняется площадь поперечного сечения стержня. Рассматриваемый стержень состоит из четырех участков. Пронумеруем граничные сечения стержня, присвоив точке В нулевой номер. В этом случае номера участка будет совпадать с номером верхнего сечения участка стержня. Очевидно, в основной системе перемещение верхнего сечения стержня в точке  А равно нулю, так как он закреплен.

Для построения эпюры нормальных напряжений вдоль оси стержня, определим значения напряжения в опорных сечениях

Расчет стержневой системы по предельному состоянию Расчет по предельному состоянию позволяет определить несущую способность конструкцию, т.е. предельную нагрузку, при которой конструкция теряет свою работоспособность. Потеря конструкцией работоспособности происходит по причине разрушения или потери конструкции или отдельных ее элементов, либо по причине возникновения в конструкции больших деформаций и превращения конструкции в механизм. Именно по последней причине происходит выход из рабочего состояния конструкций, состоящих из пластичных материалов.

Геометрические характеристики сечений При изучении напряженно деформированного состояния центрально- растянутых стержней использовалась единственная геометрическая характеристика – площадь поперечного сечения A. Изучение напряженно-деформированного состояния стержней, работающих на изгиб, кручение и другие виды сопротивления, выявляет новые интегральные характеристики сечений. Для определения напряжений и деформаций стержней необходимо знать численные значения этих геометрических характеристик. Следовательно, необходимо уметь определять эти характеристики, знать их свойства.

Определяют геометрические характеристики сечения – осевые, полярный и центробежный моменты инерции сечения относительно центральных осей

Круг Мора моментов инерции сечений Кроме аналитического метода определения положения главных осей и вычисления главных моментов инерции по формулам можно использовать графический метод – построение круга Мора моментов инерции сечения. Графический метод может использоваться как независимо, так и для контроля правильности аналитических расчетов. При аккуратном построении круга Мора графический метод позволяет определить положение главных осей и значения главных моментов инерции с точностью 3-х – 5-ти процентов

Геометрические характеристики прокатных профилей Для сечений, составленных из прокатных профилей (двутавры, швеллера, уголки) геометрические характеристики определяются в соответствии с ГОСТ (государственный общероссийский стандарт). В таблицах прокатных профилей приводятся все размеры, согласно которым изготовляются прокатные профили, а так же значение геометрических характеристик - осевых моментов инерции, моментов сопротивления, радиусов инерции, координаты центра тяжести сечения, а также значение , определяющего положение главных осей несимметричных сечений (неравнобокий уголок).

Определяем координаты центров тяжести элементов сечения относительно центральных осей

Расчет трехопорных рам Рамы представляют собой геометрически неизменяемую систему, состоящую из стержней, расположенных в плоскости (плоские рамы) или в пространстве, жестко или шарнирно соединенных между собой. Сложные рамные системы, в том числе статически неопределимые, изучаются в курсе строительной механики стержневых систем. В данной работе рассматриваются простейшие плоские статически определимые рамы, состоящие из жестко соединенных прямых стержней. Конструкция рамы не имеет замкнутых контуров и имеет три опорных стержня.

Характерные особенности эпюр внутренних усилий в рамах и контроль за правильностью их построения. Нормальные силы на участках рамы, при отсутствии продольных распределенных нагрузок, постоянны. Для контроля за правильностью вычисления и построению эпюр поперечных сил и изгибающих моментов используют дифференциальные соотношения Журавского

Порядок расчета рамы Определяются опорные реакции. Простые статически определимые рамы, состоящие из жестко соединенных стержней, имеют три опорных стержня, не пересекающихся в одной точке – трехопорная рама, или одну опору с жестким защемлением - консольная рама. В трехопорной раме опорные реакции действуют вдоль опорных стержней. В консольной раме в защемлении действуют две взаимно перпендикулярные реакции и опорный момент. Направление опорных реакций (вправо, влево от сечения опорного стержня) и опорного момента выбирается произвольно. 

Пример расчета трехопорной рамы

Расчет систем стержней, соединенных с недеформируемым элементом

На рис. 1.5 изображена стержневая система, состоящая из жесткого, недеформируемого стержня АВ, шарнирно опертого в точке А и подкрепленного тремя деформируемыми стержнями. Схема деформирования такой системы определяется возможными перемещениями жесткого элемента. Для рассматриваемой системы (рис.1.5) возможен поворот элемента  АВ, как жесткого диска, вокруг шарнира А. При этом стержни, подкрепляющие жесткий элемент, деформируются.

Неизвестными в заданной системе являются усилия в подкрепляющих стержнях - N1, N2, N3 и реакции в шарнире - RA, RВ. Таким образом, число неизвестных Н = 5. Для плоской системы можно составить У = 3 независимых уравнений равновесия. Следовательно, Л = Н – У = 5 – 3 = 2 - система два раза статически неопределима. 

Для решения задачи необходимо использовать условия неразрывности деформаций. Для составления этих условий в системе с жестким элементом нужно рассмотреть схему ее деформирования. Схема деформирования рассматриваемой системы представлена на рис. 1.6. При определении перемещений узлов системы принимаются следующие положения:

1/ деформации (перемещения) малы, вследствие чего, точки элементов при их вращении вокруг закрепленных (опорных) точек перемещаются перпендикулярно оси элементов в их первоначальном положении;

2/ после деформирования системы углы между элементами не изменяются.

Для заданной системы (рис. 6.1) точки 1, 2, 3 жесткого элемента АВ перемещаются вертикально. При этом, очевидно, что перемещения этих точек связаны соотношениями:

 . (1.2.1)

Точки деформируемых элементов, соединенных с жестким элементом, перемещаются соответственно в точки . При этом стержни удлиняются (или укорачиваются). Процесс деформирования первого и второго стержней можно разложить на два этапа (рис. 1.6 - узлы 1, 2): 

1-й этап - поворот стержней вокруг неподвижных точек О1 и О2 - точки 1, 2 переходят в положение  и  соответственно;

 2-й этап – удлинения (укорочение) стержней - точки ,  переходят в положение  и  соответственно. 

Из схемы деформирования видно, что удлинения стержней определяются по формулам:

; . (1.2.2) 

 


В формулах (1.2.2) удлинения стержней выражены через один общий параметр - u1. Эти формулы являются уравнениями неразрывности рассматриваемой стержневой системы с жестким элементом. Знак минус в формуле деформации  D2 2-го стержня соответствует сжатию (укорачиванию) этого элемента.

Удлинениям стержней соответствуют растягивающие (сжимающие) усилия в стержнях:

 . (1.2.3)

Используя отношения Nk к N1, выразим усилия в стержнях через один силовой параметр:

 

И далее, учитывая соотношения (1.2.2) и размеры стержней (см. рис. 1.5), получим:

И, следовательно, имеем

 ; (1.2.4)

Для окончательного решения задачи составим уравнение равновесия – равенство нулю момента относительно точки А ( при этом из уравнения исключаются опорные реакции - VA  и HA)

;

С учетом формул (1.2.4) получаем

или 

Откуда

кН;

кН;

кН.

Вычисляем напряжения в стержнях;

МПа;

МПа;

МПа.


На главную